01/10/2018, 12:04

Hỏi về đánh giá số liệu trên file csv

gõ tới đây ('results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)) nó bị lỗi là sao vậy ạ?

# Cross Validation Classification Accuracy
from pandas import read_csv
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
filename = 'B-M all(25).csv'
dataframe = read_csv(filename)
array = dataframe.values
X = array[:,0:263]
Y = array[:,263]
kfold = KFold(n_splits=10, random_state=7)
model = LogisticRegression()
scoring = 'accuracy'
results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

ValueError                                Traceback (most recent call last)
<ipython-input-85-c441c7796992> in <module>()
----> 1 results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)

/home/ttran/anaconda3/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in cross_val_score(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch)
    138                                               train, test, verbose, None,
    139                                               fit_params)
--> 140                       for train, test in cv_iter)
    141     return np.array(scores)[:, 0]
    142 

/home/ttran/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self, iterable)
    756             # was dispatched. In particular this covers the edge
    757             # case of Parallel used with an exhausted iterator.
--> 758             while self.dispatch_one_batch(iterator):
    759                 self._iterating = True
    760             else:

/home/ttran/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in dispatch_one_batch(self, iterator)
    606                 return False
    607             else:
--> 608                 self._dispatch(tasks)
    609                 return True
    610 

/home/ttran/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in _dispatch(self, batch)
    569         dispatch_timestamp = time.time()
    570         cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self)
--> 571         job = self._backend.apply_async(batch, callback=cb)
    572         self._jobs.append(job)
    573 

/home/ttran/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in apply_async(self, func, callback)
    107     def apply_async(self, func, callback=None):
    108         """Schedule a func to be run"""
--> 109         result = ImmediateResult(func)
    110         if callback:
    111             callback(result)

/home/ttran/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in __init__(self, batch)
    324         # Don't delay the application, to avoid keeping the input
    325         # arguments in memory
--> 326         self.results = batch()
    327 
    328     def get(self):

/home/ttran/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self)
    129 
    130     def __call__(self):
--> 131         return [func(*args, **kwargs) for func, args, kwargs in self.items]
    132 
    133     def __len__(self):

/home/ttran/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in <listcomp>(.0)
    129 
    130     def __call__(self):
--> 131         return [func(*args, **kwargs) for func, args, kwargs in self.items]
    132 
    133     def __len__(self):

/home/ttran/anaconda3/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, error_score)
    236             estimator.fit(X_train, **fit_params)
    237         else:
--> 238             estimator.fit(X_train, y_train, **fit_params)
    239 
    240     except Exception as e:

/home/ttran/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/logistic.py in fit(self, X, y, sample_weight)
   1172         X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64,
   1173                          order="C")
-> 1174         check_classification_targets(y)
   1175         self.classes_ = np.unique(y)
   1176         n_samples, n_features = X.shape

/home/ttran/anaconda3/lib/python3.6/site-packages/sklearn/utils/multiclass.py in check_classification_targets(y)
    170     if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',
    171             'multilabel-indicator', 'multilabel-sequences']:
--> 172         raise ValueError("Unknown label type: %r" % y_type)
    173 
    174 

ValueError: Unknown label type: 'unknown'

print("Accuracy: %.3f (%.3f)") % (results.mean(), results.std())
Bài liên quan
0